Double diffraction in an atomic gravimeter
نویسندگان
چکیده
We demonstrate the realization of a new scheme for cold atom gravimetry based on the use of double diffraction beamsplitters recently demonstrated in [1], where the use of two retro-reflected Raman beams allows symmetric diffraction in ±h̄keff momenta. Though in principle restricted to the case of zero Doppler shift, for which the two pairs of Raman beams are simultaneously resonant, we demonstrate that such diffraction pulses can remain efficient on atoms with non zero velocity, such as in a gravimeter, when modulating the frequency of one of the two Raman laser sources. We use such pulses to realize an interferometer insensitive to laser phase noise and some of the dominant systematics. This reduces the technical requirements and would allow the realization of a simple atomic gravimeter. We demonstrate a sensitivity of 1.2× 10g per shot. ∗[email protected]
منابع مشابه
Precision measurement of gravity with cold atoms in an optical lattice and comparison with a classical gravimeter.
We report on a precision measurement of gravitational acceleration using ultracold strontium atoms confined in an amplitude-modulated vertical optical lattice. An uncertainty Δg/g ≈ 10(-7) is reached by measuring at the 5th harmonic of the Bloch frequency. The value obtained with this microscopic quantum system is consistent with the one measured with a classical gravimeter. Using lattice modul...
متن کاملMechanical Properties and Microstructural Evolution of Ta/TaNx Double Layer Thin Films Deposited by Magnetron Sputtering
Crystalline tantalum thin films of about 500nm thickness were deposited on AISI 316L stainless steel substrate using magnetron sputtering. To investigate the nano-mechanical properties of tantalum films, deposition was performed at two temperatures (25°C and 200°C) on TaNx intermediate layer with different N2/Ar flow rate ratio from 0 to 30%. Nano-indentation was performed to obtain the mechani...
متن کاملThe effect of wavefront aberrations in atom interferometry
Wavefront aberrations are one of the largest uncertainty factors in present atom interferometers. We present a detailed numerical and experimental analysis of this effect based on measured aberrations from optical windows. By placing windows into the Raman beam path of our atomic gravimeter, we verify for the first time the induced bias in very good agreement with theory. Our method can be used...
متن کاملQuantum Effects in Matter-Wave Diffraction
Advances in micro-technology of the last years have made it possible to carry optics textbooks experiments over to atomic and molecular beams, such as diffraction by a double slit or transmission grating. The usual wave-optical approach gives a good qualitative description of these experiments. However, small deviations therefrom and sophisticated quantum mechanics yield new surprising insights...
متن کاملStructure of the coat protein in Pf1 bacteriophage determined by solid-state NMR spectroscopy.
The atomic resolution structure of Pf1 coat protein determined by solid-state NMR spectroscopy of magnetically aligned filamentous bacteriophage particles in solution is compared to the structures previously determined by X-ray fiber and neutron diffraction, the structure of its membrane-bound form, and the structure of fd coat protein. These structural comparisons provide insights into several...
متن کامل